An automated microdrop delivery system for neuronal network patterning on microelectrode arrays.
نویسندگان
چکیده
The aim of this work is to present a new technique for defining interconnected sub-populations of cultured neurons on microelectrode arrays (MEAs). An automated microdrop delivery technique allows to design and realize spatially distributed neuronal ensembles by depositing sub-nanoliter volumes of adhesion molecules in which neurons grow and develop. Electrophysiological tests demonstrate that functionally interconnected clusters are obtained and experimental results (both spontaneous and stimulus evoked activity recordings) attesting the feasibility of the proposed approach are presented. By means of the automated system, different and specific architectures can be easily designed and functionally studied. In the presented system the speed of drop deposition is about 30 drops/min; the mean diameter is 147 microm; typical cell survival time is 4-5 weeks. By changing drop size and spacing, investigations about how the network dynamics is related to the network structure can be systematically carried out.
منابع مشابه
Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
For cell-based biosensor applications, dissociated neurons have been cultured on planar microelectrode arrays (MEAs) to measure the network activity with substrate-embedded microelectrodes. There has been a need for a multi-well type platform to reduce the data collection time and increase the statistical power for data analysis. This study presents a novel method to convert a conventional MEA ...
متن کاملMultiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays
A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA) was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons...
متن کاملPatterning to enhance activity of cultured neuronal networks.
Embryonic rat hippocampal neurons were cultured in order to gain insights into how small networks of neurons interact. The principal observations are the electrical activities recorded with the electrode arrays, primarily action potentials both spontaneous and evoked. Several lithographic techniques were developed for controlling with micrometer precision the patterns of surface molecules in or...
متن کاملRevealing neuronal function through microelectrode array recordings
Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, w...
متن کاملToward a comparison of microelectrodes for acute and chronic recordings.
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for a chronic and stable electrode-tissue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 161 1 شماره
صفحات -
تاریخ انتشار 2007